001/*
002 *  gnu/regexp/REMatch.java
003 *  Copyright (C) 1998-2001 Wes Biggs
004 *
005 *  This library is free software; you can redistribute it and/or modify
006 *  it under the terms of the GNU Lesser General Public License as published
007 *  by the Free Software Foundation; either version 2.1 of the License, or
008 *  (at your option) any later version.
009 *
010 *  This library is distributed in the hope that it will be useful,
011 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
012 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
013 *  GNU Lesser General Public License for more details.
014 *
015 *  You should have received a copy of the GNU Lesser General Public License
016 *  along with this program; if not, write to the Free Software
017 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
018 */
019
020package gnu.regexp;
021import java.io.Serializable;
022
023/**
024 * An instance of this class represents a match
025 * completed by a gnu.regexp matching function. It can be used
026 * to obtain relevant information about the location of a match
027 * or submatch.
028 *
029 * @author <A HREF="mailto:wes@cacas.org">Wes Biggs</A>
030 */
031public final class REMatch implements Serializable, Cloneable {
032    private String matchedText;
033
034    // These variables are package scope for fast access within the engine
035    int eflags; // execution flags this match was made using
036
037    // Offset in source text where match was tried.  This is zero-based;
038    // the actual position in the source text is given by (offset + anchor).
039    int offset;
040
041    // Anchor position refers to the index into the source input
042    // at which the matching operation began.
043    // This is also useful for the ANCHORINDEX option.
044    int anchor;
045
046    // Package scope; used by RE.
047    int index; // used while matching to mark current match position in input
048    int[] start; // start positions (relative to offset) for each (sub)exp.
049    int[] end;   // end positions for the same
050    REMatch next; // other possibility (to avoid having to use arrays)
051
052    public Object clone() {
053        try {
054            REMatch copy = (REMatch) super.clone();
055            copy.next = null;
056
057            copy.start = (int[]) start.clone();
058            copy.end = (int[]) end.clone();
059
060            return copy;
061        } catch (CloneNotSupportedException e) {
062            throw new Error(); // doesn't happen
063        }
064    }
065
066    void assignFrom(REMatch other) {
067        start = other.start;
068        end = other.end;
069        index = other.index;
070        // need to deep clone?
071        next = other.next;
072    }
073
074    REMatch(int subs, int anchor, int eflags) {
075        start = new int[subs+1];
076        end = new int[subs+1];
077        this.anchor = anchor;
078        this.eflags = eflags;
079        clear(anchor);
080    }
081
082    void finish(CharIndexed text) {
083        start[0] = 0;
084        StringBuffer sb = new StringBuffer();
085        int i;
086        for (i = 0; i < end[0]; i++)
087            sb.append(text.charAt(i));
088        matchedText = sb.toString();
089        for (i = 0; i < start.length; i++) {
090            // If any subexpressions didn't terminate, they don't count
091            // TODO check if this code ever gets hit
092            if ((start[i] == -1) ^ (end[i] == -1)) {
093                start[i] = -1;
094                end[i] = -1;
095            }
096        }
097        next = null; // cut off alternates
098    }
099    
100    /** Clears the current match and moves the offset to the new index. */
101    void clear(int index) {
102        offset = index;
103        this.index = 0;
104        for (int i = 0; i < start.length; i++) {
105            start[i] = end[i] = -1;
106        }
107        next = null; // cut off alternates
108    }
109    
110    /**
111     * Returns the string matching the pattern.  This makes it convenient
112     * to write code like the following:
113     * <P>
114     * <code> 
115     * REMatch myMatch = myExpression.getMatch(myString);<br>
116     * if (myMatch != null) System.out.println("Regexp found: "+myMatch);
117     * </code>
118     */
119    public String toString() {
120        return matchedText;
121    }
122    
123    /**
124     * Returns the index within the input text where the match in its entirety
125     * began.
126     */
127    public int getStartIndex() {
128        return offset + start[0];
129    }
130    
131    /**
132     * Returns the index within the input string where the match in
133     * its entirety ends.  The return value is the next position after
134     * the end of the string; therefore, a match created by the
135     * following call:
136     *
137     * <P>
138     * <code>REMatch myMatch = myExpression.getMatch(myString);</code>
139     * <P>
140     * can be viewed (given that myMatch is not null) by creating
141     * <P>
142     * <code>String theMatch = myString.substring(myMatch.getStartIndex(),
143     * myMatch.getEndIndex());</code>
144     * <P>
145     * But you can save yourself that work, since the <code>toString()</code>
146     * method (above) does exactly that for you.  
147     */
148    public int getEndIndex() {
149        return offset + end[0];
150    }
151  
152    /**
153     * Returns the string matching the given subexpression.  The subexpressions
154     * are indexed starting with one, not zero.  That is, the subexpression
155     * identified by the first set of parentheses in a regular expression
156     * could be retrieved from an REMatch by calling match.toString(1).
157     *
158     * @param sub Index of the subexpression.
159     */
160    public String toString(int sub) {
161        if ((sub >= start.length) || (start[sub] == -1)) return "";
162        return (matchedText.substring(start[sub],end[sub]));
163    }
164    
165    /** 
166     * Returns the index within the input string used to generate this match
167     * where subexpression number <i>sub</i> begins, or <code>-1</code> if
168     * the subexpression does not exist.  The initial position is zero.
169     *
170     * @param sub Subexpression index
171     * @deprecated Use getStartIndex(int) instead.
172     */
173    public int getSubStartIndex(int sub) {
174        if (sub >= start.length) return -1;
175        int x = start[sub];
176        return (x == -1) ? x : offset + x;
177    }
178    
179    /** 
180     * Returns the index within the input string used to generate this match
181     * where subexpression number <i>sub</i> begins, or <code>-1</code> if
182     * the subexpression does not exist.  The initial position is zero.
183     *
184     * @param sub Subexpression index
185     * @since gnu.regexp 1.1.0
186     */
187    public int getStartIndex(int sub) {
188        if (sub >= start.length) return -1;
189        int x = start[sub];
190        return (x == -1) ? x : offset + x;
191    }
192  
193    /** 
194     * Returns the index within the input string used to generate this match
195     * where subexpression number <i>sub</i> ends, or <code>-1</code> if
196     * the subexpression does not exist.  The initial position is zero.
197     *
198     * @param sub Subexpression index
199     * @deprecated Use getEndIndex(int) instead
200     */
201    public int getSubEndIndex(int sub) {
202        if (sub >= start.length) return -1;
203        int x = end[sub];
204        return (x == -1) ? x : offset + x;
205    }
206    
207    /** 
208     * Returns the index within the input string used to generate this match
209     * where subexpression number <i>sub</i> ends, or <code>-1</code> if
210     * the subexpression does not exist.  The initial position is zero.
211     *
212     * @param sub Subexpression index
213     */
214    public int getEndIndex(int sub) {
215        if (sub >= start.length) return -1;
216        int x = end[sub];
217        return (x == -1) ? x : offset + x;
218    }
219    
220    /**
221     * Substitute the results of this match to create a new string.
222     * This is patterned after PERL, so the tokens to watch out for are
223     * <code>$0</code> through <code>$9</code>.  <code>$0</code> matches
224     * the full substring matched; <code>$<i>n</i></code> matches
225     * subexpression number <i>n</i>.
226     *
227     * @param input A string consisting of literals and <code>$<i>n</i></code> tokens.
228     */
229    public String substituteInto(String input) {
230        // a la Perl, $0 is whole thing, $1 - $9 are subexpressions
231        StringBuffer output = new StringBuffer();
232        int pos;
233        for (pos = 0; pos < input.length()-1; pos++) {
234            if ((input.charAt(pos) == '$') && (Character.isDigit(input.charAt(pos+1)))) {
235                int val = Character.digit(input.charAt(++pos),10);
236                if (val < start.length) {
237                    output.append(toString(val));
238                } 
239            } else output.append(input.charAt(pos));
240        }
241        if (pos < input.length()) output.append(input.charAt(pos));
242        return output.toString();
243    }
244}