

JavaScript is disabled on your browser.

Skip navigation links

	Overview
	Package
	Class
	Tree
	Deprecated
	Index
	Help

WebARTS Design
Java Library
Version 0.10.2
2020-11-11 (Wed), 10:42:54

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

com.itextpdf.text.pdf.hyphenation

Class TernaryTree

	java.lang.Object
	
	com.itextpdf.text.pdf.hyphenation.TernaryTree

	
	All Implemented Interfaces:
	Serializable, Cloneable

	Direct Known Subclasses:
	HyphenationTree

public class TernaryTree
extends Object
implements Cloneable, Serializable

Ternary Search Tree.

 A ternary search tree is a hybrid between a binary tree and
 a digital search tree (trie). Keys are limited to strings.
 A data value of type char is stored in each leaf node.
 It can be used as an index (or pointer) to the data.
 Branches that only contain one key are compressed to one node
 by storing a pointer to the trailer substring of the key.
 This class is intended to serve as base class or helper class
 to implement Dictionary collections or the like. Ternary trees
 have some nice properties as the following: the tree can be
 traversed in sorted order, partial matches (wildcard) can be
 implemented, retrieval of all keys within a given distance
 from the target, etc. The storage requirements are higher than
 a binary tree but a lot less than a trie. Performance is
 comparable with a hash table, sometimes it outperforms a hash
 function (most of the time can determine a miss faster than a hash).

 The main purpose of this java port is to serve as a base for
 implementing TeX's hyphenation algorithm (see The TeXBook,
 appendix H). Each language requires from 5000 to 15000 hyphenation
 patterns which will be keys in this tree. The strings patterns
 are usually small (from 2 to 5 characters), but each char in the
 tree is stored in a node. Thus memory usage is the main concern.
 We will sacrifice 'elegance' to keep memory requirements to the
 minimum. Using java's char type as pointer (yes, I know pointer
 it is a forbidden word in java) we can keep the size of the node
 to be just 8 bytes (3 pointers and the data char). This gives
 room for about 65000 nodes. In my tests the English patterns
 took 7694 nodes and the German patterns 10055 nodes,
 so I think we are safe.

 All said, this is a map with strings as keys and char as value.
 Pretty limited!. It can be extended to a general map by
 using the string representation of an object and using the
 char value as an index to an array that contains the object
 values.

	Author:
	cav@uniscope.co.jp
	See Also:
	Serialized Form

	

	

Nested Class Summary

Nested Classes 	Modifier and Type	Class and Description
	class 	TernaryTree.Iterator

	

Field Summary

Fields 	Modifier and Type	Field and Description
	protected static int	BLOCK_SIZE
	protected char[]	eq
Pointer to equal branch and to data when this node is a string terminator.

	protected char	freenode
	protected char[]	hi
Pointer to high branch.

	protected CharVector	kv
This vector holds the trailing of the keys when the branch is compressed.

	protected int	length
	protected char[]	lo
Pointer to low branch and to rest of the key when it is
 stored directly in this node, we don't have unions in java!

	protected char	root
	protected char[]	sc
The character stored in this node: splitchar.

	private static long	serialVersionUID
We use 4 arrays to represent a node.

	

Constructor Summary

Constructors 	Constructor and Description
	TernaryTree()

	

Method Summary

All Methods Static Methods Instance Methods Concrete Methods 	Modifier and Type	Method and Description
	void	balance()
Balance the tree for best search performance

	Object	clone()
	private void	compact(CharVector kx,
 TernaryTree map,
 char p)
	int	find(char[] key,
 int start)
	int	find(String key)
	protected void	init()
	void	insert(char[] key,
 int start,
 char val)
	private char	insert(char p,
 char[] key,
 int start,
 char val)
The actual insertion function, recursive version.

	void	insert(String key,
 char val)
Branches are initially compressed, needing
 one node per key plus the size of the string
 key.

	protected void	insertBalanced(String[] k,
 char[] v,
 int offset,
 int n)
Recursively insert the median first and then the median of the
 lower and upper halves, and so on in order to get a balanced
 tree.

	Enumeration<String>	keys()
	boolean	knows(String key)
	void	printStats()
	private void	redimNodeArrays(int newsize)
	int	size()
	static int	strcmp(char[] a,
 int startA,
 char[] b,
 int startB)
Compares 2 null terminated char arrays

	static int	strcmp(String str,
 char[] a,
 int start)
Compares a string with null terminated char array

	static void	strcpy(char[] dst,
 int di,
 char[] src,
 int si)
	static int	strlen(char[] a)
	static int	strlen(char[] a,
 int start)
	void	trimToSize()
Each node stores a character (splitchar) which is part of
 some key(s).

	

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

	

	

Field Detail

	
serialVersionUID

private static final long serialVersionUID

We use 4 arrays to represent a node. I guess I should have created
 a proper node class, but somehow Knuth's pascal code made me forget
 we now have a portable language with virtual memory management and
 automatic garbage collection! And now is kind of late, furthermore,
 if it ain't broken, don't fix it.

	See Also:
	Constant Field Values

	
lo

protected char[] lo

Pointer to low branch and to rest of the key when it is
 stored directly in this node, we don't have unions in java!

	
hi

protected char[] hi

Pointer to high branch.

	
eq

protected char[] eq

Pointer to equal branch and to data when this node is a string terminator.

	
sc

protected char[] sc

The character stored in this node: splitchar.
 Two special values are reserved:

 	0x0000 as string terminator
	0xFFFF to indicate that the branch starting at
 this node is compressed

 This shouldn't be a problem if we give the usual semantics to
 strings since 0xFFFF is guaranteed not to be an Unicode character.

	
kv

protected CharVector kv

This vector holds the trailing of the keys when the branch is compressed.

	
root

protected char root

	
freenode

protected char freenode

	
length

protected int length

	
BLOCK_SIZE

protected static final int BLOCK_SIZE

	See Also:
	Constant Field Values

	

Constructor Detail

	
TernaryTree

TernaryTree()

	

Method Detail

	
init

protected void init()

	
insert

public void insert(String key,
 char val)

Branches are initially compressed, needing
 one node per key plus the size of the string
 key. They are decompressed as needed when
 another key with same prefix
 is inserted. This saves a lot of space,
 specially for long keys.

	
insert

public void insert(char[] key,
 int start,
 char val)

	
insert

private char insert(char p,
 char[] key,
 int start,
 char val)

The actual insertion function, recursive version.

	
strcmp

public static int strcmp(char[] a,
 int startA,
 char[] b,
 int startB)

Compares 2 null terminated char arrays

	
strcmp

public static int strcmp(String str,
 char[] a,
 int start)

Compares a string with null terminated char array

	
strcpy

public static void strcpy(char[] dst,
 int di,
 char[] src,
 int si)

	
strlen

public static int strlen(char[] a,
 int start)

	
strlen

public static int strlen(char[] a)

	
find

public int find(String key)

	
find

public int find(char[] key,
 int start)

	
knows

public boolean knows(String key)

	
redimNodeArrays

private void redimNodeArrays(int newsize)

	
size

public int size()

	
clone

public Object clone()

	Overrides:
	clone in class Object

	
insertBalanced

protected void insertBalanced(String[] k,
 char[] v,
 int offset,
 int n)

Recursively insert the median first and then the median of the
 lower and upper halves, and so on in order to get a balanced
 tree. The array of keys is assumed to be sorted in ascending
 order.

	
balance

public void balance()

Balance the tree for best search performance

	
trimToSize

public void trimToSize()

Each node stores a character (splitchar) which is part of
 some key(s). In a compressed branch (one that only contain
 a single string key) the trailer of the key which is not
 already in nodes is stored externally in the kv array.
 As items are inserted, key substrings decrease.
 Some substrings may completely disappear when the whole
 branch is totally decompressed.
 The tree is traversed to find the key substrings actually
 used. In addition, duplicate substrings are removed using
 a map (implemented with a TernaryTree!).

	
compact

private void compact(CharVector kx,
 TernaryTree map,
 char p)

	
keys

public Enumeration<String> keys()

	
printStats

public void printStats()

Skip navigation links

	Overview
	Package
	Class
	Tree
	Deprecated
	Index
	Help

Copyright (C) 2001-2021, Tom B. Gutwin

	Prev Class
	Next Class

	Frames
	No Frames

	All Classes

	Summary:
	Nested |
	Field |
	Constr |
	Method

	Detail:
	Field |
	Constr |
	Method

WebARTS Library Licensed Under the GNU - General Public License. Other Libraries licensed under their respective Open Source Licenses

